Skrape MCP Server

Skrape MCP Server

By skrapeai GitHub

MCP Server for skrape.ai, lets you input any URL and it returns clean markdown for the LLM

scraper mcp
Overview

What is Skrape MCP Server?

Skrape MCP Server is a tool that converts any webpage into clean, LLM-ready Markdown format, making it ideal for integrating web content into language models like Claude and GPT.

How to use Skrape MCP Server?

To use the Skrape MCP Server, input any URL into the server, and it will return a structured Markdown output. You can install it via Smithery or manually configure it with your API key.

Key features of Skrape MCP Server?

  • Converts web pages to clean, structured Markdown
  • Removes ads and irrelevant content for clarity
  • Supports JavaScript rendering for dynamic content
  • Provides an optional JSON response format for advanced integrations

Use cases of Skrape MCP Server?

  1. Feeding web content into LLMs for processing
  2. Generating structured documentation from web pages
  3. Simplifying the integration of web data into applications

FAQ from Skrape MCP Server?

  • Can Skrape MCP Server handle all types of web pages?

Yes! It can convert any webpage into Markdown, regardless of its structure.

  • Is there a cost associated with using Skrape MCP Server?

The server is free to use, but you need an API key from skrape.ai.

  • How does Skrape MCP Server ensure clean output?

It automatically removes unnecessary elements like ads and menus, focusing on the main content.

Content

Skrape MCP Server

smithery badge Convert any webpage into clean, LLM-ready Markdown using skrape.ai. Perfect for feeding web content into LLMs.

This MCP server provides a simple interface to convert web pages to structured, clean Markdown format using the skrape.ai API. It's designed to work seamlessly with Claude Desktop, other LLMs, and MCP-compatible applications.

Why Use Skrape for LLM Integration?

  • Clean, Structured Output: Generates well-formatted Markdown that's ideal for LLM consumption
  • Noise Reduction: Automatically removes ads, navigation menus, and other irrelevant content
  • Consistent Format: Ensures web content is uniformly structured regardless of the source
  • JavaScript Support: Handles dynamic content by rendering JavaScript before conversion
  • LLM-Optimized: Perfect for feeding web content into LLMs like Claude, GPT, and other LLM models

Features

Tools

  • get_markdown - Convert any webpage to LLM-ready Markdown
    • Takes any input URL and optional parameters
    • Returns clean, structured Markdown optimized for LLM consumption
    • Supports JavaScript rendering for dynamic content
    • Optional JSON response format for advanced integrations

Installation

Installing via Smithery

To install Skrape MCP Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @skrapeai/skrape-mcp --client claude

Manual Installation

  1. Get your API key from skrape.ai

  2. Install dependencies:

npm install
  1. Build the server:
npm run build
  1. Add the server config to Claude Desktop:

On MacOS:

nano ~/Library/Application\ Support/Claude/claude_desktop_config.json

On Windows:

notepad %APPDATA%/Claude/claude_desktop_config.json

Add this configuration (replace paths and API key with your values):

{
  "mcpServers": {
    "skrape": {
      "command": "node",
      "args": ["path/to/skrape-mcp/build/index.js"],
      "env": {
        "SKRAPE_API_KEY": "your-key-here"
      },
    }
  }
}

Using with LLMs

Here's how to use the server with Claude or other LLM models:

  1. First, ensure the server is properly configured in your LLM application
  2. Then, you can ask the ALLMI to fetch and process any webpage:
Convert this webpage to markdown: https://example.com

Claude will use the MCP tool like this:
<use_mcp_tool>
<server_name>skrape</server_name>
<tool_name>get_markdown</tool_name>
<arguments>
{
  "url": "https://example.com",
  "options": {
    "renderJs": true
  }
}
</arguments>
</use_mcp_tool>

The resulting Markdown will be clean, structured, and ready for LLM processing.

Advanced Options

The get_markdown tool accepts these parameters:

  • url (required): Any webpage URL to convert
  • returnJson (optional): Set to true to get the full JSON response instead of just markdown
  • options (optional): Additional scraping options
    • renderJs: Whether to render JavaScript before scraping (default: true)

Example with all options:

<use_mcp_tool>
<server_name>skrape</server_name>
<tool_name>get_markdown</tool_name>
<arguments>
{
  "url": "https://example.com",
  "returnJson": true,
  "options": {
    "renderJs": false
  }
}
</arguments>
</use_mcp_tool>

Development

For development with auto-rebuild:

npm run watch

Debugging

Since MCP servers communicate over stdio, debugging can be challenging. We recommend using the MCP Inspector:

npm run inspector

The Inspector will provide a URL to access debugging tools in your browser.

No tools information available.
School MCP
School MCP by 54yyyu

A Model Context Protocol (MCP) server for academic tools, integrating with Canvas and Gradescope platforms.

canvas mcp
View Details
repo-template
repo-template by loonghao

A Model Context Protocol (MCP) server for Python package intelligence, providing structured queries for PyPI packages and GitHub repositories. Features include dependency analysis, version tracking, and package metadata retrieval for LLM interactions.

-

google-calendar mcp
View Details
strava-mcp
strava-mcp by jeremysilva1098

MCP server for strava

strava mcp
View Details

Model Context Protocol (MCP) server implementation for Rhinoceros/Grasshopper integration, enabling AI models to interact with parametric design tools

grasshopper mcp
View Details

MCP configuration to connect AI agent to a Linux machine.

security mcp
View Details

AI assistant built with Streamlit, NVIDIA NIM (LLaMa 3.3:70B) / Ollama, and Model Control Protocol (MCP).

python mcp
View Details