Building a Twitter Trends Analysis MCP Server for Claude

Building a Twitter Trends Analysis MCP Server for Claude

By Muralikrishankp GitHub

-

Overview

Building a Twitter Trends Analysis MCP Server for Claude

What is the Project About?

This project focuses on creating a Model Context Protocol (MCP) server that links Twitter's trending topics with Claude's analysis functions. The server enables the retrieval and analysis of real-time Twitter trends for extracting business insights.

How to Use the Project?

To use this MCP server, follow these steps:

  1. Set up your environment with Python and required libraries.
  2. Configure the Twitter API credentials.
  3. Run the server using the command line and connect it with Claude Desktop for analysis.

Key Features of the Project?

  • Real-time trend fetching from Twitter
  • Integration with Claude for insightful analysis
  • Detailed logging for enhanced debugging
  • Capability to identify business opportunities based on trends

Use Cases of the Project?

  1. Analyzing current Twitter trends for SaaS business opportunities.
  2. Monitoring brand mentions to adjust marketing strategies.
  3. Identifying emerging market trends based on social media engagement.

FAQ from the Project?

  • What are the main prerequisites?

You need Python 3.8 or higher, a Twitter Developer Account with API access, and Claude Desktop.

  • How do I run the server?

After setting up your environment and configuring your API keys, run python twitter_server_run.py.

  • What kind of analysis can Claude perform?

Claude can analyze trends to identify potential business opportunities and provide insights based on the data fetched from Twitter.

Content

Building a Twitter Trends Analysis MCP Server for Claude

This tutorial will guide you through creating a Model Context Protocol (MCP) server that connects Twitter's trending topics with Claude's analysis capabilities. The server will fetch real-time Twitter trends and use Claude to analyze them for business opportunities.

Prerequisites

  • Python 3.8 or higher
  • Claude Desktop installed
  • Twitter Developer Account with API access
  • Basic understanding of Python

Part 1: Setting Up the Environment

  1. Create a new project directory:
mkdir twitter-trends-mcp
cd twitter-trends-mcp
  1. Set up a virtual environment:
python -m venv .venv
.venv\Scripts\activate  # On Windows
  1. Install required packages:
pip install tweepy mcp python-dotenv hatchling

Part 2: Project Structure

Create the following directory structure:

twitter-trends-mcp/
├── pyproject.toml
├── twitter_server_run.py
├── src/
│   └── twitter_trends_mcp/
│       ├── __init__.py
│       └── server.py

Part 3: Configuration Files

  1. Create pyproject.toml in the root directory:
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

[project]
name = "twitter-trends-mcp"
version = "0.1.0"
description = "Twitter Trends MCP Server"
requires-python = ">=3.8"
dependencies = [
    "tweepy",
    "mcp",
    "python-dotenv"
]

[tool.hatch.build]
packages = ["src/twitter_trends_mcp"]
include = ["src/twitter_trends_mcp/*"]

[project.scripts]
twitter-trends-server = "twitter_trends_mcp:main"
  1. Create src/twitter_trends_mcp/__init__.py:
"""Twitter Trends MCP Server package."""
import asyncio
from . import server

def main():
    """Main entry point for the package."""
    asyncio.run(server.main())

__all__ = ['main', 'server']
  1. Create entry point file twitter_server_run.py:
#!/usr/bin/env python
import os
import sys
import logging
from pathlib import Path

# Configure logging
logging.basicConfig(
    level=logging.DEBUG,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('twitter_server.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger('twitter-trends-mcp')

# Add the src directory to the Python path
src_path = str(Path(__file__).parent / "src")
sys.path.insert(0, src_path)
logger.info(f"Python path: {sys.path}")

try:
    from twitter_trends_mcp.server import main
    logger.info("Successfully imported server module")
except Exception as e:
    logger.error(f"Error importing server module: {e}")
    raise

if __name__ == "__main__":
    try:
        logger.info("Starting server...")
        import asyncio
        asyncio.run(main())
    except KeyboardInterrupt:
        logger.info("Server stopped by user")
    except Exception as e:
        logger.error(f"Server error: {e}")
        raise

Part 4: Twitter API Setup

  1. Go to Twitter Developer Portal
  2. Create a new project and app
  3. Get your API credentials:
    • API Key
    • API Secret
    • Access Token
    • Access Token Secret
    • Bearer Token

Part 5: MCP Server Implementation

Create src/twitter_trends_mcp/server.py with the complete server code, including:

  • API client initialization
  • Trend fetching logic
  • Resource and tool handlers
  • Analysis integration with Claude

Key components:

# Initialize Twitter clients
client_v2 = tweepy.Client(...)
auth = tweepy.OAuthHandler(...)
api_v1 = tweepy.API(auth)

# Define server capabilities
app = Server("twitter-trends-server")

# Implement handlers
@app.list_resources()
async def list_resources() -> list[Resource]: ...

@app.read_resource()
async def read_resource(uri: AnyUrl) -> str: ...

@app.list_tools()
async def list_tools() -> list[Tool]: ...

@app.call_tool()
async def call_tool(name: str, arguments: Any) -> Sequence[TextContent]: ...

Part 6: Claude Desktop Configuration

  1. Locate your Claude Desktop config file:

    • Windows: %APPDATA%\Claude\claude_desktop_config.json
    • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  2. Update the configuration:

{
  "mcpServers": {
    "twitter-trends": {
      "command": "C:\\Users\\YOUR_USERNAME\\twitter-trends-mcp\\.venv\\Scripts\\python.exe",
      "args": ["C:\\Users\\YOUR_USERNAME\\twitter-trends-mcp\\twitter_server_run.py"],
      "env": {
        "PYTHONPATH": "C:\\Users\\YOUR_USERNAME\\twitter-trends-mcp\\src",
        "PYTHONUNBUFFERED": "1"
      },
      "cwd": "C:\\Users\\YOUR_USERNAME\\twitter-trends-mcp"
    }
  }
}

Part 7: Running and Testing

  1. Install the package:
pip install -e .
  1. Run server:
python twitter_server_run.py
  1. In Claude Desktop:

    • Click the 🔌 icon
    • Look for "twitter-trends"
    • Try: "Analyze current Twitter trends for SaaS opportunities"
  2. Monitor logs:

Get-Content twitter_server.log -Wait

Troubleshooting Tips

  1. Common Issues:

    • Module not found: Check PYTHONPATH
    • Connection errors: Verify paths in config
    • API errors: Validate credentials
    • Server not responding: Check logs
  2. Log Locations:

    • Server: twitter_server.log
    • Claude: %APPDATA%\Claude\Logs\mcp*.log

Features

  • Real-time trend fetching
  • Category-based analysis
  • Business opportunity identification
  • AI-powered insights
  • Detailed logging

Best Practices

  1. Use absolute paths
  2. Keep credentials secure
  3. Monitor logs
  4. Test incrementally
  5. Use virtual environments

Next Steps

  • Add trend history
  • Implement sentiment analysis
  • Support more regions
  • Add business metrics
  • Enhance analysis categories
No tools information available.
No content found.