what is Popmelt MCP Server?
The Popmelt MCP Server is an implementation of the Model Context Protocol that provides access to Talent AI profiles and styling capabilities for dynamic UI component styling.
how to use Popmelt MCP Server?
To use the Popmelt MCP Server, clone the repository, install dependencies, set up the PostgreSQL database, and run the server in either stdio mode or HTTP mode for remote access.
key features of Popmelt MCP Server?
- Access to complete Talent AI profiles with aesthetic characteristics.
- CSS styling generation from stored metadata.
- Dynamic integration of Talent-driven design choices into UI components.
- Direct connection to a PostgreSQL database for data retrieval.
- Multiple transport options for server operation.
use cases of Popmelt MCP Server?
- Generating CSS styles for UI components based on Talent profiles.
- Analyzing compatibility between different design styles.
- Integrating dynamic styling into applications using Talent AI.
FAQ from Popmelt MCP Server?
- What is the Model Context Protocol?
It is a protocol that allows applications to access and utilize contextual data for enhanced functionality.
- How do I set up the database?
You can set up the database by running the provided SQL setup script after cloning the repository.
- Can I run the server in different modes?
Yes, the server can be run in standard stdio mode or as an HTTP server with SSE support.
Popmelt MCP Server
An MCP (Model Context Protocol) server for Popmelt, providing access to Talent AI and Taste Profiles for dynamic UI component styling.
Overview
The Popmelt MCP Server leverages the Model Context Protocol to expose Talent AI profiles and styling capabilities to LLMs and other applications. It connects directly to Popmelt's PostgreSQL database to access and serve detailed Talent profiles, including structured metadata and weighted styling attributes.
Features
- Talent AI Profile Access: Retrieve complete Talent profiles with their unique aesthetic characteristics and design attributes
- CSS Styling Generation: Generate CSS styling rules directly from stored metadata
- Dynamic UI Component Styling: Easily integrate Talent-driven design choices into your UI components
- Database Integration: Direct connection to PostgreSQL database where Talent profiles are stored
- Multiple Transport Options: Run the server using stdio for command-line tools or HTTP with SSE for remote servers
Project Structure
popmelt-mcp-server/
├── src/ # Source code
│ ├── db/ # Database access layer
│ │ └── index.ts # Database connection and query functions
│ ├── utils/ # Utility modules
│ │ └── css-generator.ts # CSS generation utilities
│ ├── mcp-server.ts # MCP server core implementation
│ ├── server.ts # Stdio transport server
│ └── http-server.ts # HTTP/SSE transport server
├── scripts/ # Helper scripts
│ ├── setup-db.sql # SQL for setting up the database
│ └── setup-db.js # Script to run the SQL setup
├── examples/ # Example client usage
│ └── generate-css.js # Example script to generate CSS
├── dist/ # Compiled TypeScript output
├── package.json # Project configuration
└── tsconfig.json # TypeScript configuration
Database Schema
The Popmelt MCP Server uses a PostgreSQL database with the following schema:
CREATE TABLE talents (
id VARCHAR(50) PRIMARY KEY,
name VARCHAR(100) NOT NULL,
description TEXT,
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
metadata JSONB NOT NULL
);
Where the metadata
JSON field has the following structure:
{
"aesthetic_characteristics": {
"style": "minimalist",
"mood": "calm",
"complexity": 2,
"minimalism": 9,
"boldness": 3,
"playfulness": 2,
"elegance": 8
},
"design_attributes": {
"whitespace_balance": 9,
"color_harmony": 7,
"visual_rhythm": 6,
"layout_density": 2,
"texture_use": 1,
"border_use": 2,
"shadow_use": 3
},
"color_palette": {
"primary": "#2D3748",
"secondary": "#4A5568",
"accent": "#38B2AC",
"background": "#FFFFFF",
"text": "#1A202C"
},
"typography": {
"headingFont": "Inter, sans-serif",
"bodyFont": "Inter, sans-serif",
"scale": 1.2,
"weight": "light",
"letterSpacing": 0.02,
"lineHeight": 1.5
}
}
Getting Started
Prerequisites
- Node.js 18 or higher
- PostgreSQL database
Installation
- Clone this repository
- Install dependencies:
npm install
- Copy the example environment file and update with your database details:
cp .env.example .env
- Set up the database:
node scripts/setup-db.js
- Build the TypeScript code:
npm run build
Running the Server
Two server modes are available:
- Standard stdio mode (for command-line tools and direct integration):
npm start
- HTTP server with SSE support (for remote access and web integration):
npm run start:http
The HTTP server provides:
- An SSE endpoint at
/sse
for receiving real-time updates - A POST endpoint at
/messages
for sending commands - A health check endpoint at
/health
API Reference
Resources
The server exposes the following MCP resources:
Resource URI | Description |
---|---|
talent://list | List all available talent profiles |
talent://{id} | Get a specific talent profile by ID |
talent-attribute://{id}/{attribute} | Get a specific attribute of a talent (supports dot notation for nested properties) |
component-style://{talent_id}/{component_name} | Get CSS for a specific component using a talent profile |
Tools
The server provides the following MCP tools:
Tool Name | Description | Arguments |
---|---|---|
generate-css | Generate CSS for a component based on a talent profile | talentId , component , state (optional), customProperties (optional) |
generate-component-library | Generate CSS for a complete component library | talentId |
query-talents | Perform a read-only query on talent metadata | filters |
analyze-style-compatibility | Analyze compatibility between different talent styles | talentId1 , talentId2 |
Prompts
The server offers the following MCP prompts:
Prompt Name | Description | Arguments |
---|---|---|
style-component | LLM prompt for styling a component | talentId , component , requirements (optional) |
create-talent-description | LLM prompt for creating a descriptive summary of a talent | talentId |
recommend-talent | LLM prompt for recommending talents based on requirements | projectType , brandPersonality , targetAudience , aestheticPreferences (optional) |
Example Usage
Using the MCP Client
import { Client } from '@modelcontextprotocol/sdk/client/index.js';
import { StdioClientTransport } from '@modelcontextprotocol/sdk/client/stdio.js';
// Create transport
const transport = new StdioClientTransport({
command: 'node',
args: ['dist/server.js']
});
// Create client
const client = new Client(
{ name: 'example-client', version: '1.0.0' },
{ capabilities: { resources: {}, tools: {} } }
);
// Connect to server
await client.connect(transport);
// List all talents
const talents = await client.listResources('talent://');
// Get a specific talent
const talent = await client.readResource('talent://modern-minimalist');
// Generate CSS for a button
const css = await client.callTool({
name: 'generate-css',
arguments: {
talentId: 'modern-minimalist',
component: 'button',
state: 'hover'
}
});
// Analyze compatibility between two talents
const compatibility = await client.callTool({
name: 'analyze-style-compatibility',
arguments: {
talentId1: 'modern-minimalist',
talentId2: 'bold-vibrant'
}
});
Running the Example Script
node examples/generate-css.js
This example script demonstrates how to use the MCP client to generate CSS for all available talents and analyze compatibility between two talents.
Development
Building the Project
npm run build
Running in Development Mode
npm run dev
License
MIT