what is Aider MCP Server?
Aider MCP Server is an experimental server designed to offload AI coding tasks to Aider, enhancing development efficiency and flexibility.
how to use Aider MCP Server?
To use the Aider MCP Server, clone the repository, install dependencies, configure your API keys in the environment file, and run the server with the appropriate commands for your project.
key features of Aider MCP Server?
- Offloads AI coding tasks to Aider for improved efficiency.
- Lists available AI models for coding tasks.
- Provides tools for AI coding and model listing.
use cases of Aider MCP Server?
- Automating code refactoring tasks.
- Listing available AI models for coding assistance.
- Enhancing coding workflows by integrating AI capabilities.
FAQ from Aider MCP Server?
- What is the purpose of the Aider MCP Server?
It is designed to enhance coding efficiency by offloading tasks to an AI assistant.
- How do I set up the server?
Follow the setup instructions in the documentation, including cloning the repo and configuring your environment.
- Can I use my own API keys?
Yes, you can configure your own API keys in the environment file.
Aider MCP Server - Experimental
Model context protocol server for offloading AI coding work to Aider, enhancing development efficiency and flexibility.
Overview
This server allows Claude Code to offload AI coding tasks to Aider, the best open source AI coding assistant. By delegating certain coding tasks to Aider, we can reduce costs, gain control over our coding model and operate Claude Code in a more orchestrative way to review and revise code.
Setup
- Clone the repository:
git clone https://github.com/disler/aider-mcp-server.git
- Install dependencies:
uv sync
- Create your environment file:
cp .env.sample .env
- Configure your API keys in the
.env
file (or use the mcpServers "env" section) to have the api key needed for the model you want to use in aider:
GEMINI_API_KEY=your_gemini_api_key_here
OPENAI_API_KEY=your_openai_api_key_here
ANTHROPIC_API_KEY=your_anthropic_api_key_here
...see .env.sample for more
- Copy and fill out the the
.mcp.json
into the root of your project and update the--directory
to point to this project's root directory and the--current-working-dir
to point to the root of your project.
{
"mcpServers": {
"aider-mcp-server": {
"type": "stdio",
"command": "uv",
"args": [
"--directory",
"<path to this project>",
"run",
"aider-mcp-server",
"--editor-model",
"gpt-4o",
"--current-working-dir",
"<path to your project>"
],
"env": {
"GEMINI_API_KEY": "<your gemini api key>",
"OPENAI_API_KEY": "<your openai api key>",
"ANTHROPIC_API_KEY": "<your anthropic api key>",
...see .env.sample for more
}
}
}
}
Testing
Tests run with gemini-2.5-pro-exp-03-25
To run all tests:
uv run pytest
To run specific tests:
# Test listing models
uv run pytest src/aider_mcp_server/tests/atoms/tools/test_aider_list_models.py
# Test AI coding
uv run pytest src/aider_mcp_server/tests/atoms/tools/test_aider_ai_code.py
Note: The AI coding tests require a valid API key for the Gemini model. Make sure to set it in your .env
file before running the tests.
Add this MCP server to Claude Code
gemini-2.5-pro-exp-03-25
Add with claude mcp add aider-mcp-server -s local \
-- \
uv --directory "<path to the aider mcp server project>" \
run aider-mcp-server \
--editor-model "gemini/gemini-2.5-pro-exp-03-25" \
--current-working-dir "<path to your project>"
gemini-2.5-pro-preview-03-25
Add with claude mcp add aider-mcp-server -s local \
-- \
uv --directory "<path to the aider mcp server project>" \
run aider-mcp-server \
--editor-model "gemini/gemini-2.5-pro-preview-03-25" \
--current-working-dir "<path to your project>"
quasar-alpha
Add with claude mcp add aider-mcp-server -s local \
-- \
uv --directory "<path to the aider mcp server project>" \
run aider-mcp-server \
--editor-model "openrouter/openrouter/quasar-alpha" \
--current-working-dir "<path to your project>"
llama4-maverick-instruct-basic
Add with claude mcp add aider-mcp-server -s local \
-- \
uv --directory "<path to the aider mcp server project>" \
run aider-mcp-server \
--editor-model "fireworks_ai/accounts/fireworks/models/llama4-maverick-instruct-basic" \
--current-working-dir "<path to your project>"
Usage
This MCP server provides the following functionalities:
-
Offload AI coding tasks to Aider:
- Takes a prompt and file paths
- Uses Aider to implement the requested changes
- Returns success or failure
-
List available models:
- Provides a list of models matching a substring
- Useful for discovering supported models
Available Tools
This MCP server exposes the following tools:
aider_ai_code
1. This tool allows you to run Aider to perform AI coding tasks based on a provided prompt and specified files.
Parameters:
ai_coding_prompt
(string, required): The natural language instruction for the AI coding task.relative_editable_files
(list of strings, required): A list of file paths (relative to thecurrent_working_dir
) that Aider is allowed to modify. If a file doesn't exist, it will be created.relative_readonly_files
(list of strings, optional): A list of file paths (relative to thecurrent_working_dir
) that Aider can read for context but cannot modify. Defaults to an empty list[]
.model
(string, optional): The primary AI model Aider should use for generating code. Defaults to"gemini/gemini-2.5-pro-exp-03-25"
. You can use thelist_models
tool to find other available models.editor_model
(string, optional): The AI model Aider should use for editing/refining code, particularly when using architect mode. If not provided, the primarymodel
might be used depending on Aider's internal logic. Defaults toNone
.
Example Usage (within an MCP request):
Claude Code Prompt:
Use the Aider AI Code tool to: Refactor the calculate_sum function in calculator.py to handle potential TypeError exceptions.
Result:
{
"name": "aider_ai_code",
"parameters": {
"ai_coding_prompt": "Refactor the calculate_sum function in calculator.py to handle potential TypeError exceptions.",
"relative_editable_files": ["src/calculator.py"],
"relative_readonly_files": ["docs/requirements.txt"],
"model": "openai/gpt-4o"
}
}
Returns:
- A simple dict: {success, diff}
success
: boolean - Whether the operation was successful.diff
: string - The diff of the changes made to the file.
list_models
2. This tool lists available AI models supported by Aider that match a given substring.
Parameters:
substring
(string, required): The substring to search for within the names of available models.
Example Usage (within an MCP request):
Claude Code Prompt:
Use the Aider List Models tool to: List models that contain the substring "gemini".
Result:
{
"name": "list_models",
"parameters": {
"substring": "gemini"
}
}
Returns:
- A list of model name strings that match the provided substring. Example:
["gemini/gemini-1.5-flash", "gemini/gemini-1.5-pro", "gemini/gemini-pro"]
Architecture
The server is structured as follows:
- Server layer: Handles MCP protocol communication
- Atoms layer: Individual, pure functional components
- Tools: Specific capabilities (AI coding, listing models)
- Utils: Constants and helper functions
- Data Types: Type definitions using Pydantic
All components are thoroughly tested for reliability.
Codebase Structure
The project is organized into the following main directories and files:
.
├── ai_docs # Documentation related to AI models and examples
│ ├── just-prompt-example-mcp-server.xml
│ └── programmable-aider-documentation.md
├── pyproject.toml # Project metadata and dependencies
├── README.md # This file
├── specs # Specification documents
│ └── init-aider-mcp-exp.md
├── src # Source code directory
│ └── aider_mcp_server # Main package for the server
│ ├── __init__.py # Package initializer
│ ├── __main__.py # Main entry point for the server executable
│ ├── atoms # Core, reusable components (pure functions)
│ │ ├── __init__.py
│ │ ├── data_types.py # Pydantic models for data structures
│ │ ├── logging.py # Custom logging setup
│ │ ├── tools # Individual tool implementations
│ │ │ ├── __init__.py
│ │ │ ├── aider_ai_code.py # Logic for the aider_ai_code tool
│ │ │ └── aider_list_models.py # Logic for the list_models tool
│ │ └── utils.py # Utility functions and constants (like default models)
│ ├── server.py # MCP server logic, tool registration, request handling
│ └── tests # Unit and integration tests
│ ├── __init__.py
│ └── atoms # Tests for the atoms layer
│ ├── __init__.py
│ ├── test_logging.py # Tests for logging
│ └── tools # Tests for the tools
│ ├── __init__.py
│ ├── test_aider_ai_code.py # Tests for AI coding tool
│ └── test_aider_list_models.py # Tests for model listing tool
src/aider_mcp_server
: Contains the main application code.atoms
: Holds the fundamental building blocks. These are designed to be pure functions or simple classes with minimal dependencies.tools
: Each file here implements the core logic for a specific MCP tool (aider_ai_code
,list_models
).utils.py
: Contains shared constants like default model names.data_types.py
: Defines Pydantic models for request/response structures, ensuring data validation.logging.py
: Sets up a consistent logging format for console and file output.
server.py
: Orchestrates the MCP server. It initializes the server, registers the tools defined in theatoms/tools
directory, handles incoming requests, routes them to the appropriate tool logic, and sends back responses according to the MCP protocol.__main__.py
: Provides the command-line interface entry point (aider-mcp-server
), parsing arguments like--editor-model
and starting the server defined inserver.py
.tests
: Contains tests mirroring the structure of thesrc
directory, ensuring that each component (especially atoms) works as expected.