
MCPChatbot Example
A chatbot implementation compatible with MCP (terminal / streamlit supported)
what is MCPChatbot?
MCPChatbot is a simple chatbot implementation that integrates the Model Context Protocol (MCP) with customized language models (LLMs) like Qwen, allowing for interaction with various tools through MCP servers.
how to use MCPChatbot?
To use MCPChatbot, clone the repository, set up a virtual environment, install dependencies, configure your environment variables, and run the chatbot using the command python main.py
.
key features of MCPChatbot?
- Simple CLI chatbot interface
- Integration with Markdown processing tools via MCP
- Support for customized LLMs
- Example implementation for processing and summarizing Markdown files
use cases of MCPChatbot?
- Engaging in interactive conversations with an AI chatbot.
- Processing and summarizing Markdown content.
- Extending functionalities by adding new MCP servers.
FAQ from MCPChatbot?
- Can MCPChatbot work with any LLM?
Yes! MCPChatbot can be configured to work with any LLM API by setting the appropriate environment variables.
- Is there a graphical interface for MCPChatbot?
No, MCPChatbot currently operates through a command-line interface.
- How can I extend the functionalities of MCPChatbot?
You can extend the project by adding new MCP servers in the
mcp_servers/
directory and updating the configuration.
MCPChatbot Example
This project demonstrates how to integrate the Model Context Protocol (MCP) with customized LLM (e.g. Qwen), creating a powerful chatbot that can interact with various tools through MCP servers. The implementation showcases the flexibility of MCP by enabling LLMs to use external tools seamlessly.
TIP
For Chinese version, please refer to README_ZH.md.
Overview
Chatbot Streamlit Example

Workflow Tracer Example

- 🚩 Update (2025-04-11):
- Added chatbot streamlit example.
- 🚩 Update (2025-04-10):
- More complex LLM response parsing, supporting multiple MCP tool calls and multiple chat iterations.
- Added single prompt examples with both regular and streaming modes.
- Added interactive terminal chatbot examples.
This project includes:
- Simple/Complex CLI chatbot interface
- Integration with some builtin MCP Server like (Markdown processing tools)
- Support for customized LLM (e.g. Qwen) and Ollama
- Example scripts for single prompt processing in both regular and streaming modes
- Interactive terminal chatbot with regular and streaming response modes
Requirements
- Python 3.10+
- Dependencies (automatically installed via requirements):
- python-dotenv
- mcp[cli]
- openai
- colorama
Installation
-
Clone the repository:
git clone git@github.com:keli-wen/mcp_chatbot.git cd mcp_chatbot
-
Set up a virtual environment (recommended):
cd folder # Install uv if you don't have it already pip install uv # Create a virtual environment and install dependencies uv venv .venv --python=3.10 # Activate the virtual environment # For macOS/Linux source .venv/bin/activate # For Windows .venv\Scripts\activate # Deactivate the virtual environment deactivate
-
Install dependencies:
pip install -r requirements.txt # or use uv for faster installation uv pip install -r requirements.txt
-
Configure your environment:
-
Copy the
.env.example
file to.env
:cp .env.example .env
-
Edit the
.env
file to add your Qwen API key (just for demo, you can use any LLM API key, remember to set the base_url and api_key in the .env file) and set the paths:LLM_MODEL_NAME=your_llm_model_name_here LLM_BASE_URL=your_llm_base_url_here LLM_API_KEY=your_llm_api_key_here OLLAMA_MODEL_NAME=your_ollama_model_name_here OLLAMA_BASE_URL=your_ollama_base_url_here MARKDOWN_FOLDER_PATH=/path/to/your/markdown/folder RESULT_FOLDER_PATH=/path/to/your/result/folder
-
Important Configuration Notes ⚠️
Before running the application, you need to modify the following:
-
MCP Server Configuration: Edit
mcp_servers/servers_config.json
to match your local setup:{ "mcpServers": { "markdown_processor": { "command": "/path/to/your/uv", "args": [ "--directory", "/path/to/your/project/mcp_servers", "run", "markdown_processor.py" ] } } }
Replace
/path/to/your/uv
with the actual path to your uv executable. You can usewhich uv
to get the path. Replace/path/to/your/project/mcp_servers
with the absolute path to the mcp_servers directory in your project. -
Environment Variables: Make sure to set proper paths in your
.env
file:MARKDOWN_FOLDER_PATH="/path/to/your/markdown/folder" RESULT_FOLDER_PATH="/path/to/your/result/folder"
The application will validate these paths and throw an error if they contain placeholder values.
You can run the following command to check your configuration:
bash scripts/check.sh
Usage
Unit Test
You can run the following command to run the unit test:
bash scripts/unittest.sh
Examples
Single Prompt Examples
The project includes two single prompt examples:
-
Regular Mode: Process a single prompt and display the complete response
python example/single_prompt/single_prompt.py
-
Streaming Mode: Process a single prompt with real-time streaming output
python example/single_prompt/single_prompt_stream.py
Both examples accept an optional --llm
parameter to specify which LLM provider to use:
python example/single_prompt/single_prompt.py --llm=ollama
NOTE
For more details, see the Single Prompt Example README.
Terminal Chatbot Examples
The project includes two interactive terminal chatbot examples:
-
Regular Mode: Interactive terminal chat with complete responses
python example/chatbot_terminal/chatbot_terminal.py
-
Streaming Mode: Interactive terminal chat with streaming responses
python example/chatbot_terminal/chatbot_terminal_stream.py
Both examples accept an optional --llm
parameter to specify which LLM provider to use:
python example/chatbot_terminal/chatbot_terminal.py --llm=ollama
NOTE
For more details, see the Terminal Chatbot Example README.
Streamlit Web Chatbot Example
The project includes an interactive web-based chatbot example using Streamlit:
streamlit run example/chatbot_streamlit/app.py
This example features:
- Interactive chat interface.
- Real-time streaming responses.
- Detailed MCP tool workflow visualization.
- Configurable LLM settings (OpenAI/Ollama) and MCP tool display via the sidebar.
NOTE
For more details, see the Streamlit Chatbot Example README.
Project Structure
mcp_chatbot/
: Core library codechat/
: Chat session managementconfig/
: Configuration handlingllm/
: LLM client implementationmcp/
: MCP client and tool integrationutils/
: Utility functions (e.g.WorkflowTrace
andStreamPrinter
)
mcp_servers/
: Custom MCP servers implementationmarkdown_processor.py
: Server for processing Markdown filesservers_config.json
: Configuration for MCP servers
data-example/
: Example Markdown files for testingexample/
: Example scripts for different use casessingle_prompt/
: Single prompt processing examples (regular and streaming)chatbot_terminal/
: Interactive terminal chatbot examples (regular and streaming)chatbot_streamlit/
: Interactive web chatbot example using Streamlit
Extending the Project
You can extend this project by:
- Adding new MCP servers in the
mcp_servers/
directory - Updating the
servers_config.json
to include your new servers - Implementing new functionalities in the existing servers
- Creating new examples based on the provided templates
Troubleshooting
- Path Issues: Ensure all paths in the configuration files are absolute paths appropriate for your system
- MCP Server Errors: Make sure the tools are properly installed and configured
- API Key Errors: Verify your API key is correctly set in the
.env
file