MCP LLM API Server

MCP LLM API Server

By ianrichard GitHub

-

Overview

what is MCP LLM API Server?

MCP LLM API Server is an API server designed for integrating large language models (LLMs) using the Model-Call-Protocol pattern and Pydantic AI.

how to use MCP LLM API Server?

To use the MCP LLM API Server, set up a virtual environment, install dependencies, and run the server in either CLI or API mode. You can also use Docker for deployment.

key features of MCP LLM API Server?

  • Terminal interface for command-line interaction
  • API server with WebSocket streaming capabilities
  • Web client demonstration included
  • Tool call support through the Model-Call-Protocol (MCP)

use cases of MCP LLM API Server?

  1. Integrating various LLMs for different applications
  2. Building interactive AI agents that respond to user queries
  3. Demonstrating LLM capabilities through a web client

FAQ from MCP LLM API Server?

  • What programming language is used?

The MCP LLM API Server is built using Python 3.9 and above.

  • How do I configure the models?

You can configure the models by setting the BASE_MODEL environment variable in the .env file.

  • Is there a demo available?

Yes! A demo web client is included in the /static directory.

Content

MCP LLM API Server

An API server for LLMs using the Model-Call-Protocol pattern and Pydantic AI.

Features

  • Terminal interface for CLI interaction
  • API server with WebSocket streaming
  • Web client demonstration
  • Tool call support through MCP

Prerequisites

  • Python 3.9+
  • A virtual environment (venv)

Quick Start (Local Development)

  1. Copy .env.example to .env and add your API keys
  2. Create and activate a virtual environment:
    python3 -m venv .venv
    source .venv/bin/activate  # On Linux/macOS
    # or
    .venv\Scripts\activate  # On Windows
    
  3. Install dependencies:
    pip install -r requirements.txt
    
  4. Run the CLI:
    python src/main.py --mode cli
    
  5. Run the API:
    python src/main.py --mode api
    

Docker

Build the Docker image

docker build -t mcp-llm-api-server .

Running API mode (default)

docker run -p 8000:8000 --env-file .env mcp-llm-api-server

Running CLI mode (interactive)

docker run -it --env-file .env mcp-llm-api-server --mode cli

Docker Development with Live Reloading

# Run with volume mount for live code reloading during development
docker run -p 8000:8000 --env-file .env -v $(pwd):/app mcp-llm-api-server

Using Docker Compose

# Start the API service
docker-compose up

Model Configuration

This project uses Pydantic AI for AI model integration. You can configure which model to use by setting the BASE_MODEL environment variable.

The format follows the Pydantic AI convention: provider:model_name

Examples:

  • openai:gpt-4o
  • anthropic:claude-3-opus-20240229
  • groq:llama-3.3-70b-versatile

See the complete list of supported models at: https://ai.pydantic.dev/models/

API Keys

For each provider, you'll need to set the corresponding API key in your .env file:

# Example .env configuration
BASE_MODEL=groq:llama-3.3-70b-versatile
GROQ_API_KEY=your-groq-api-key
OPENAI_API_KEY=your-openai-api-key
ANTHROPIC_API_KEY=your-anthropic-api-key

The API key environment variable follows the pattern: {PROVIDER_NAME}_API_KEY

API Documentation

Once the API server is running, access the auto-generated API documentation at:

Making API Calls

The primary endpoint is /chat, which accepts POST requests with a JSON body containing the user's message.

Example using curl:

curl -X POST -H "Content-Type: application/json" -d '{"message": "Hello, agent!"}' http://localhost:8000/chat

For streaming responses, use the WebSocket endpoint:

ws://localhost:8000/ws

Web Client

A demo web client is included in the /static directory. Access it at:

http://localhost:8000/

Important Notes

  • Ensure that the virtual environment is activated before running either the client or the server.
  • The API server runs on port 8000 by default.
  • Both the CLI interface and API server use the same underlying agent functionality.
No tools information available.
No content found.