
Qdrant Retrieve MCP Server
MCP server for semantic search with Qdrant vector database
what is Qdrant Retrieve MCP Server?
Qdrant Retrieve MCP Server is a server designed for semantic search using the Qdrant vector database, enabling efficient retrieval of semantically similar documents across multiple collections.
how to use Qdrant Retrieve MCP Server?
To use the server, configure it with the Qdrant API key and specify the Qdrant instance URL. You can then send queries to retrieve similar documents based on your input.
key features of Qdrant Retrieve MCP Server?
- Semantic search across multiple collections
- Multi-query support for enhanced search capabilities
- Configurable result count to tailor the output
- Collection source tracking for better context
use cases of Qdrant Retrieve MCP Server?
- Retrieving relevant documents for research purposes
- Enhancing search functionalities in applications
- Analyzing large datasets for semantic similarities
FAQ from Qdrant Retrieve MCP Server?
- What is the default port for the MCP HTTP server?
The default port for the MCP HTTP server is 3001.
- Can I enable HTTP transport?
Yes, you can enable HTTP transport by using the
--enableHttpTransport
option.
- Is there a REST API available?
Yes, you can enable the REST API server by using the
--enableRestServer
option.
Qdrant Retrieve MCP Server
MCP server for semantic search with Qdrant vector database.
Features
- Semantic search across multiple collections
- Multi-query support
- Configurable result count
- Collection source tracking
Note: The server connects to a Qdrant instance specified by URL.
Note 2: The first retrieve might be slower, as the MCP server downloads the required embedding model.
API
Tools
- qdrant_retrieve
- Retrieves semantically similar documents from multiple Qdrant vector store collections based on multiple queries
- Inputs:
collectionNames
(string[]): Names of the Qdrant collections to search acrosstopK
(number): Number of top similar documents to retrieve (default: 3)query
(string[]): Array of query texts to search for
- Returns:
results
: Array of retrieved documents with:query
: The query that produced this resultcollectionName
: Collection name that this result came fromtext
: Document text contentscore
: Similarity score between 0 and 1
Usage with Claude Desktop
Add this to your claude_desktop_config.json
:
{
"mcpServers": {
"qdrant": {
"command": "npx",
"args": ["-y", "@gergelyszerovay/mcp-server-qdrant-retrive"],
"env": {
"QDRANT_API_KEY": "your_api_key_here"
}
}
}
}
Command Line Options
MCP server for semantic search with Qdrant vector database.
Options
--enableHttpTransport Enable HTTP transport [default: false]
--enableStdioTransport Enable stdio transport [default: true]
--enableRestServer Enable REST API server [default: false]
--mcpHttpPort=<port> Port for MCP HTTP server [default: 3001]
--restHttpPort=<port> Port for REST HTTP server [default: 3002]
--qdrantUrl=<url> URL for Qdrant vector database [default: http://localhost:6333]
--embeddingModelType=<type> Type of embedding model to use [default: Xenova/all-MiniLM-L6-v2]
--help Show this help message
Environment Variables
QDRANT_API_KEY API key for authenticated Qdrant instances (optional)
Examples
$ mcp-qdrant --enableHttpTransport
$ mcp-qdrant --mcpHttpPort=3005 --restHttpPort=3006
$ mcp-qdrant --qdrantUrl=http://qdrant.example.com:6333
$ mcp-qdrant --embeddingModelType=Xenova/all-MiniLM-L6-v2
