AgentMCP: Multi-Agent Collaboration Platform

AgentMCP: Multi-Agent Collaboration Platform

By geniusgeek GitHub

MCPAgent for Multi-agent Collaboration Network (MACNET) with Model Context Protocol (MCP) capabilities baked in

mcp agents
Overview

What is AgentMCP?

AgentMCP is a Multi-Agent Collaboration Platform that utilizes the Model Context Protocol (MCP) to facilitate seamless collaboration among AI agents. It allows developers to easily integrate their agents into a global network with just one line of code.

How to use AgentMCP?

To use AgentMCP, install the package via pip, import the mcp_agent decorator, and decorate your agent class with @mcp_agent. This instantly connects your agent to the Multi-agent Collaboration Network (MCN).

Key features of AgentMCP?

  • One-line integration to transform any agent into an MCP agent.
  • Automatic network registration for agents.
  • Framework agnostic, compatible with various AI frameworks.
  • Built-in adapters for popular frameworks like Langchain and CrewAI.

Use cases of AgentMCP?

  1. Enabling collaboration between specialized AI agents for complex tasks.
  2. Facilitating real-time communication and context sharing among agents.
  3. Allowing developers to create custom agents that can interact within a global network.

FAQ from AgentMCP?

  • Can I use AgentMCP with any AI framework?

Yes! AgentMCP is designed to work with any AI framework or custom implementation.

  • How do I register my agent?

Simply decorate your agent class with @mcp_agent, and it will automatically register with the network.

  • Is there any setup required?

No complex setup is needed; just install the package and use the decorator.

Content

AgentMCP: Multi-Agent Collaboration Platform

Put Your Agent to Work in 30 Seconds

pip install agent-mcp  # Step 1: Install
from agent_mcp import mcp_agent  # Step 2: Import

@mcp_agent(name="MyAgent")      # Step 3: Add one line - that's it! 🎉
class MyAgent:
    def analyze(self, data):
        return "Analysis complete!"

What is AgentMCP?

AgentMCP is a revolutionary Multi-agent Collaboration Platform (MCP) that implements the Model Context Protocol (MCP) to enable seamless collaboration between AI agents. With a single decorator, developers can transform any agent into an MCP-compatible agent that can participate in the Multi-Agent Collaboration Network (MACNet).

🎯 One Decorator = Infinite Possibilities

When you add @mcp_agent, your agent instantly becomes:

  • 🌐 Connected to the Multi-Agent Collaboration Network (MACNet)
  • 🤝 Ready to work with any other agent on the network
  • 🔌 Framework-agnostic (works with Langchain, CrewAI, Autogen, or any custom implementation)
  • 🧠 Empowered to communicate, share context, and collaborate with specialized agents globally

No complex setup. No infrastructure headaches. Just one line of code to join the world's first AI multi-agent collaboration network (MAC-Network)!

💡 It's Like Uber for AI Agents

Just like Uber connects drivers and riders, AgentMCP connects AI agents:

  • Your Agent: Has specific skills? Put them to work!
  • Need Help? Tap into a global network of specialized agents
  • No Lock-in: Works with any framework or custom implementation
  • One Line: That's all it takes to join the network

🔌 Availability & Connection

Just like Uber drivers, agents can go online and offline:

  • Active: Your agent is online when your app is running
  • Discoverable: Other agents can find yours when it's online
  • Smart Routing: Tasks only go to available agents
  • Auto Recovery: Handles disconnections gracefully
@mcp_agent(name="MyAgent")
class MyCustomAgent:
    @register_tool("analyze", "Analyze given data")
    def analyze_data(self, data):
        return "Analysis results"

🎯 What Just Happened?

Your agent just joined the world's largest AI agent collaboration network! It can now:

  • 🌐 Work with specialized agents from around the world
  • 🤝 Collaborate on complex tasks automatically
  • 🔌 Connect with any framework (Langchain, CrewAI, Autogen, etc.)
  • 🧠 Share context and knowledge with other agents

The platform unifies various AI frameworks (Langchain, CrewAI, Autogen, LangGraph) under a single protocol, allowing agents to communicate and collaborate regardless of their underlying implementation.

The platform uses a flexible coordinator-worker architecture with HTTP/FastAPI for communication, allowing agents to work together regardless of their underlying framework.

Features

Core Features

  • One-Line Integration: Transform any agent into an MCP agent with a single decorator
  • Automatic Network Registration: Agents automatically join the MCN upon creation
  • Framework Agnostic: Works with any AI framework or custom implementation
  • Built-in Adapters: Ready-to-use adapters for:
    • Langchain (Chain-of-thought reasoning)
    • CrewAI (Role-based collaboration)
    • Autogen (Autonomous agents)
    • LangGraph (Workflow orchestration)

Architecture

  • Coordinator-Worker Pattern: Centralized task management with distributed execution
  • FastAPI Integration: Modern, high-performance HTTP communication
  • Asynchronous Processing: Non-blocking task execution and message handling
  • Flexible Transport Layer: Extensible communication protocols

🛠 Features That Just Work

🤖 For Your Agent

  • Auto-Registration: Instant network access
  • Tool Discovery: Find and use other agents' capabilities
  • Smart Routing: Messages go to the right agent automatically
  • Built-in Memory: Share and access collective knowledge

👩‍💻 For Developers

  • Framework Freedom: Use any AI framework you love
  • Zero Config: No complex setup or infrastructure
  • Simple API: Everything through one decorator
  • Full Control: Your agent, your rules

🚀 Quick Start

1️⃣ Install

pip install agent-mcp

2️⃣ Decorate

from agent_mcp import mcp_agent

@mcp_agent()
class MyAgent:
    def work(self): pass

3️⃣ That's it! 🎉

Your agent is now part of the network!

🔥 Supported Frameworks

Works seamlessly with:

  • Langchain - For chain-of-thought reasoning
  • CrewAI - For role-based agent teams
  • Autogen - For autonomous agents
  • LangGraph - For complex agent workflows
  • Custom Agents - Your code, your way!

💎 Premium Features

  • Agent Discovery: Find the right agent for any task
  • Smart Routing: Messages flow to the right place
  • Collective Memory: Shared knowledge across agents
  • Real-time Monitoring: Track your agent's work

📚 Examples

🤖 Add AI to Any Agent

from agent_mcp import mcp_agent

# Your existing agent - no changes needed!
class MyMLAgent:
    def predict(self, data):
        return self.model.predict(data)

# Add one line to join the MAC network
@mcp_agent(name="MLPredictor")
class NetworkEnabledMLAgent(MyMLAgent):
    pass  # That's it! All methods become available to other agents

🤝 Instant Collaboration

# Your agent can now work with others!
results = await my_agent.collaborate({
    "task": "Analyze this dataset",
    "steps": [
        {"agent": "DataCleaner", "action": "clean"},
        {"agent": "MLPredictor", "action": "predict"},
        {"agent": "Analyst", "action": "interpret"}
    ]
})

🔗 Network API

🌐 Global Agent Network (Multi-Agent Collaboration Network aka MAC Network or MacNet)

Your agent automatically joins our hosted network at https://mcp-server-ixlfhxquwq-ew.a.run.app

🔑 Authentication

All handled for you! The @mcp_agent decorator:

  1. Registers your agent
  2. Gets an access token
  3. Maintains the connection

📂 API Methods

# All of these happen automatically!

# 1. Register your agent
response = await network.register(agent)

# 2. Discover other agents
agents = await network.list_agents()

# 3. Send messages
await network.send_message(target_agent, message)

# 4. Receive messages
messages = await network.receive_messages()

🚀 Advanced Features

# Find agents by capability
analysts = await network.find_agents(capability="analyze")

# Get agent status
status = await network.get_agent_status(agent_id)

# Update agent info
await network.update_agent(agent_id, new_info)

All of this happens automatically when you use the @mcp_agent decorator!

🏛 Architecture

🌐 The MAC Network

graph TD
    A[Your Agent] -->|@mcp_agent| B[MCP Network]
    B -->|Discover| C[AI Agents]
    B -->|Collaborate| D[Tools]
    B -->|Share| E[Knowledge]

🧰 How It Works

  1. One Decorator @mcp_agent

    • Transforms your agent
    • Handles registration
    • Sets up communication
  2. Instant Access

    • Global agent directory
    • Automatic discovery
    • Smart routing
  3. Built-in Adapters

    • Langchain 🧩
    • CrewAI 👨‍💻
    • Autogen 🤖
    • LangGraph 📈
  4. Task Management

    task = {
        "task_id": "research_project",
        "steps": [
            {
                "agent": "LangchainWorker",
                "task_id": "research",
                "description": "Research topic"
            },
            {
                "agent": "CrewAIWorker",
                "task_id": "analysis",
                "depends_on": ["research"]
            }
        ]
    }
    

Registering Custom Tools

from mcp_agent import MCPAgent

# Create an MCP-enabled agent
agent = MCPAgent(name="ToolAgent")

# Define a custom tool function
def calculate_sum(a: int, b: int):
    """Calculate the sum of two numbers."""
    result = a + b
    return {"status": "success", "result": result}

# Register the custom tool
agent.register_mcp_tool(
    name="math_sum",
    description="Calculate the sum of two numbers",
    func=calculate_sum,
    a_description="First number to add",
    b_description="Second number to add"
)

# Use the custom tool
result = agent.execute_tool("math_sum", a=5, b=7)
print(f"5 + 7 = {result}")

🔗 Network Benefits

  • Auto-Discovery: Find the right agents for any task
  • Smart Routing: Tasks go to the best available agent
  • Progress Tracking: Real-time updates on your tasks
  • Error Handling: Automatic retries and fallbacks

Model Context Protocol Support

The MCPAgent implements the Model Context Protocol, which provides a standardized way for AI systems to share context and capabilities. This implementation supports:

Context Management

# Set context
agent.update_context("key", "value")

# Get context
value = agent.get_context("key")

# List all context keys
keys = agent.execute_tool("context_list")

# Remove context
agent.execute_tool("context_remove", key="key_to_remove")

🧠 Smart Protocol

🔗 Multiple Ways to Connect

# 1. Simple Function Calls
result = agent.call("analyze", data=my_data)

# 2. OpenAI Compatible
result = agent.run({
    "name": "analyze",
    "arguments": {"data": my_data}
})

# 3. Natural Language
result = agent.process(
    "Please analyze this data and "
    "send the results to the visualization team"
)

🤓 Smart Features

  • Auto-Detection: Understands different call formats
  • Context Aware: Maintains conversation history
  • Tool Discovery: Finds the right tools for the job
  • Error Recovery: Handles failures gracefully

MCP Information

You can retrieve information about an agent's MCP capabilities:

info = agent.execute_tool("mcp_info")
print(f"Agent ID: {info['id']}")
print(f"Agent Version: {info['version']}")
print(f"Available Tools: {len(info['tools'])}")

Advanced Examples

The project includes several advanced examples that demonstrate the full potential of MCPAgent:

1. MCPFeaturesDemo

Run python mcp_features_demo.py to see a step-by-step demonstration of all MCPAgent features:

  • Context management operations
  • Custom tool registration and usage
  • Using agents as tools
  • LLM integration with context

This is the best example to start with to understand the core capabilities of MCPAgent.

2. The Internet of AI Agents (Agent Network)

Run python agent_network_example.py to start an interactive agent network example:

  • Simulates a social network of agents
  • Each agent has a specialized role (Coordinator, Researcher, Analyst, etc.)
  • Agents can communicate with each other through tool calls
  • You can interact with any agent and broadcast messages
  • Human input is fully supported

This example demonstrates how MCPAgent enables creating complex agent networks where agents can call and interact with each other.

3. Collaborative Project

Run python collaborative_task_example.py to start a collaborative project simulation:

  • Team of agents working together on a shared project
  • Shared workspace context with research, analysis, and tasks
  • Task assignment and progress tracking
  • Full conversation history captured
  • Human input for setting topics and interacting with agents

This example showcases how MCPAgent can be used in a structured collaborative environment where agents share a workspace and contribute to a common goal.

LangGraph Implementation

MCPAgent has also been implemented for LangGraph, providing the same Model Context Protocol capabilities within the LangGraph framework:

from mcp_langgraph import MCPNode, MCPReactAgent, create_mcp_langgraph
from langchain_openai import ChatOpenAI

# Create a LLM
llm = ChatOpenAI(model="gpt-4o")

# Create a LangGraph with MCP capabilities
graph = create_mcp_langgraph(
    llm,
    name="SimpleMCPGraph",
    system_message="You are a helpful assistant that uses context to answer questions."
)

# Access the MCP agent for the graph
mcp_agent = graph.mcp_agent

# Add context to the MCP agent
mcp_agent.update_context("user_info", {
    "name": "Alice",
    "occupation": "Data Scientist"
})

# Run the graph with a user query
from langchain_core.messages import HumanMessage

question = "What should I learn next in my field?"
initial_state = {"messages": [HumanMessage(content=question)]}
result = graph.invoke(initial_state)

LangGraph Examples

The project includes several examples that demonstrate how to use the MCP protocol with LangGraph:

  1. Basic LangGraph Example Run python langgraph_example.py to see a step-by-step demonstration of MCPNode with LangGraph.

  2. LangGraph Agent Network Run python langgraph_agent_network.py to start an interactive agent network built with LangGraph.

  3. LangGraph Collaborative Project Run python langgraph_collaborative_task.py to start a collaborative project simulation with LangGraph agents.

No tools information available.

This is a basic MCP Server-Client Impl using SSE

mcp server-client
View Details

-

mcp model-context-protocol
View Details

Buttplug.io Model Context Protocol (MCP) Server

mcp buttplug
View Details

MCP web search using perplexity without any API KEYS

mcp puppeteer
View Details

free MCP server hosting using vercel

mcp mantle-network
View Details

MCPHubs is a website that showcases projects related to Anthropic's Model Context Protocol (MCP)

mcp mcp-server
View Details