Dremio Python MCP

Dremio Python MCP

By dremio-python-mcp GitHub

-

dremio mcp
Overview

What is Dremio Python MCP?

Dremio Python MCP is a server implementation of the Model-Context Protocol (MCP) for Dremio, allowing standardized interactions with Dremio databases.

How to use Dremio Python MCP?

To use Dremio Python MCP, install the package via pip or uv, configure the connection settings in a config.yaml file or through environment variables, and run the server using the command mcp-dremio-server or python run_mcp_server.py.

Key features of Dremio Python MCP?

  • Exposes Dremio data through various resources like catalogs, schemas, and tables.
  • Provides tools for listing catalogs, schemas, tables, and executing SQL queries.
  • Security features including SQL validation, input validation, and TLS support.

Use cases of Dremio Python MCP?

  1. Integrating Dremio with other applications using the MCP.
  2. Executing SQL queries against Dremio databases programmatically.
  3. Listing and managing Dremio data resources efficiently.

FAQ from Dremio Python MCP?

  • What are the requirements to run Dremio Python MCP?

You need Python 3.10+, a Dremio instance, and PyArrow with Flight support.

  • How do I install Dremio Python MCP?

You can install it using pip with the command pip install -e . or using uv.

  • Is there a way to debug the MCP server?

Yes, you can use the MCP Inspector for debugging.

Content

Dremio Model-Context Protocol (MCP)

This project implements a Model-Context Protocol (MCP) server for Dremio. It provides a standardized way to interact with Dremio databases through the MCP.

Features

Resources

Exposes Dremio data through Resources:

  • dremio://catalogs - Lists all catalogs
  • dremio://schemas/{catalog} - Lists all schemas in a catalog
  • dremio://tables/{catalog}/{schema} - Lists all tables in a schema
  • dremio://schema/{table_name} - Gets schema information for a table

Tools

  • list_catalogs

    • Lists all available catalogs in Dremio
    • Usage: list_catalogs()
  • list_schemas

    • Lists all schemas in a specific catalog
    • Usage: list_schemas("catalog_name")
  • list_tables

    • Lists all tables in a specific schema
    • Usage: list_tables("catalog_name", "schema_name")
  • execute_sql

    • Executes a SQL query against Dremio
    • Returns results in a structured format with metadata
    • Usage: execute_sql("SELECT * FROM catalog.schema.table LIMIT 10")

Requirements

  • Python 3.10+
  • Dremio instance (Cloud or Software)
  • PyArrow with Flight support

Installation

Using pip

pip install -e .
# Install uv if you don't have it
curl -sSf https://astral.sh/uv/install.sh | bash

# Install the package
uv pip install -e .

Configuration

Create a config.yaml file in the root directory with the following configuration:

# Dremio connection settings
dremio:
  # Connection type: 'software' for Dremio Software or 'cloud' for Dremio Cloud
  type: software

  # Dremio Software connection details
  software:
    hostname: localhost
    port: 32010
    username: your_username
    password: your_password
    use_ssl: false

# Query settings
query:
  # Maximum number of rows to return in a query result
  max_rows: 10000
  # Maximum number of columns to return in schema request
  max_columns: 1000
  # Timeout in seconds for query execution
  timeout: 300

Environment Variables

You can also configure the server using environment variables:

DREMIO_HOSTNAME=localhost
DREMIO_PORT=32010
DREMIO_USERNAME=your_username
DREMIO_PASSWORD=your_password
DREMIO_USE_SSL=false

For Dremio Cloud:

DREMIO_TYPE=cloud
DREMIO_ENDPOINT=data.dremio.cloud
DREMIO_PAT_TOKEN=your_personal_access_token

Usage

Running the Server

# If installed from package
mcp-dremio-server

# Or run directly
python run_mcp_server.py

Integration with Claude or Other MCP Clients

Add the following configuration to your MCP client settings:

MacOS

// ~/Library/Application\ Support/Claude/claude_desktop_config.json
{
  "mcpServers": {
    "dremio_service": {
      "command": "/Users/USERNAME/.local/bin/uv",
      "args": [
                "--directory",
                "/Users/USERNAME/PycharmProjects/dremio-python-mcp",
                "run",
                "run_mcp_server.py"
            ]
    }
  }
}

Windows

// %APPDATA%/Claude/claude_desktop_config.json
{
  "mcpServers": {
    "dremio-mcp": {
      "command": "mcp-dremio-server",
      "args": []
    }
  }
}

Example Usage

Listing Catalogs and Schemas

// List all catalogs
list_catalogs()

// List schemas in a catalog
list_schemas("my_catalog")

// List tables in a schema
list_tables("my_catalog", "my_schema")

Executing SQL Queries

// Execute a query
results = execute_sql("SELECT * FROM my_catalog.my_schema.my_table LIMIT 10")

Security Features

  • SQL Validation: Prevents execution of non-read-only queries
  • Input Validation: Prevents SQL injection via table/schema names
  • TLS Support: Secure communication with Dremio
  • Authentication: Support for username/password and token authentication

Debugging

Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, use the MCP Inspector:

npx @modelcontextprotocol/inspector mcp-dremio-server

Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.

License

This project is licensed under the MIT License - see the LICENSE file for details.

No tools information available.
School MCP
School MCP by 54yyyu

A Model Context Protocol (MCP) server for academic tools, integrating with Canvas and Gradescope platforms.

canvas mcp
View Details
repo-template
repo-template by loonghao

A Model Context Protocol (MCP) server for Python package intelligence, providing structured queries for PyPI packages and GitHub repositories. Features include dependency analysis, version tracking, and package metadata retrieval for LLM interactions.

-

google-calendar mcp
View Details
strava-mcp
strava-mcp by jeremysilva1098

MCP server for strava

strava mcp
View Details

Model Context Protocol (MCP) server implementation for Rhinoceros/Grasshopper integration, enabling AI models to interact with parametric design tools

grasshopper mcp
View Details

MCP configuration to connect AI agent to a Linux machine.

security mcp
View Details

AI assistant built with Streamlit, NVIDIA NIM (LLaMa 3.3:70B) / Ollama, and Model Control Protocol (MCP).

python mcp
View Details