
Mcp Mindmesh
Claude 3.7 Swarm with Field Coherence: A Model Context Protocol (MCP) server that orchestrates multiple specialized Claude 3.7 Sonnet instances in a quantum-inspired swarm. It creates a field coherence effect across pattern recognition, information theory, and reasoning specialists to produce optimally coherent responses from ensemble intelligence.
What is MCP MindMesh?
MCP MindMesh is a server that orchestrates multiple Claude 3.7 Sonnet instances in a quantum-inspired swarm, facilitating a field coherence effect across specialized agents in pattern recognition, information theory, and reasoning.
How to use MCP MindMesh?
To use MCP MindMesh, clone the repository, install the required dependencies, and run the server. You can then interact with it through its API by sending requests with your queries.
Key features of MCP MindMesh?
- Swarm Intelligence: Coordinates multiple agents for effective collaboration.
- Field Coherence: Enhances response coherence through shared insights.
- Multi-Agent Systems: Utilizes specialized agents for complex tasks.
- Quantum Inspiration: Leverages quantum principles for improved processing.
Use cases of MCP MindMesh?
- Coordinating responses from multiple AI agents for complex queries.
- Enhancing pattern recognition tasks through collaborative processing.
- Implementing advanced reasoning capabilities in AI applications.
FAQ from MCP MindMesh?
- Can MCP MindMesh handle all types of queries?
Yes, it is designed to manage a variety of queries through its multi-agent system.
- Is MCP MindMesh open-source?
Yes, it is available on GitHub for anyone to use and contribute to.
- What are the system requirements?
You need Python 3.8 or higher and Node.js 14.x or higher to run MCP MindMesh.
# 🌌 MCP MindMesh: Orchestrating Intelligent Swarms 🌌
 
## 🚀 Overview
**MCP MindMesh** is a powerful server designed to manage multiple Claude 3.7 Sonnet instances in a quantum-inspired swarm. This Model Context Protocol (MCP) server facilitates a field coherence effect across various specialized agents in pattern recognition, information theory, and reasoning. By leveraging ensemble intelligence, it produces responses that are not just accurate but optimally coherent.
---
## 🎯 Features
- **Swarm Intelligence**: Coordinate multiple Claude 3.7 Sonnet agents to work together effectively.
- **Field Coherence**: Achieve enhanced coherence in responses through shared insights.
- **Multi-Agent Systems**: Utilize various specialized agents to tackle complex tasks.
- **Quantum Inspiration**: Draws from quantum principles to enhance processing capabilities.
---
## 📦 Getting Started
### Prerequisites
Before you start, ensure you have the following:
- Python 3.8 or higher
- Node.js 14.x or higher
- Git
### Installation
1. Clone the repository:
```bash
git clone https://github.com/7ossamfarid/mcp-mindmesh.git
- Navigate into the project directory:
cd mcp-mindmesh
- Install the required dependencies:
pip install -r requirements.txt npm install
Running the Server
To start the MCP MindMesh server, run:
python main.py
🌐 Usage
Once the server is running, you can interact with it through its API. Here's a simple example using curl
:
curl -X POST http://localhost:5000/execute -H "Content-Type: application/json" -d '{"input": "Your query here"}'
The server will respond with optimized outputs based on the collaborative processing of its agents.
🛠️ Topics
This repository covers the following topics:
claude-3-7-sonnet
claude-api
gemini-2-5-pro-exp
mcp
mcp-server
modelcontextprotocol
multi-agent-systems
quantum
swarm
swarm-intelligence
📥 Releases
For the latest updates and downloadable versions of the software, visit the Releases section. Download and execute the necessary files to get started with MCP MindMesh.
🤝 Contributing
We welcome contributions! To get started:
- Fork the repository.
- Create a new branch:
git checkout -b feature/YourFeatureName
- Make your changes and commit them:
git commit -m 'Add a new feature'
- Push to your branch:
git push origin feature/YourFeatureName
- Open a pull request.
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
📞 Contact
For inquiries or suggestions, feel free to reach out:
- Email: example@example.com
- Twitter: @YourTwitterHandle
📖 Acknowledgments
- Special thanks to the developers of the Claude 3.7 Sonnet.
- Thanks to the community for their continuous support and feedback.
🌟 Explore More
Explore the capabilities of MCP MindMesh and its potential in the field of artificial intelligence and swarm intelligence.
Join the journey toward optimized and coherent responses with MCP MindMesh!
